Check Mate-026

(PD1/PDL1-105)

Up to 6 cycles

(PD後のNivolumab Cross Over許容)

RC	C (TPS≧	5%)					
BIRC (TPS≧1%), OS, ORR		TMB					
		TPS	≧5%		ł	High	Low
	ORR	mPFS	OS		OR	PFS	
	26%	4.2ヶ月	14.4ヶ月		47%	9.7ヶ月	
		HR=1,15	HR=1,02				
	33%	5.9ヶ月	13.2ヶ月		28%	5.8ヶ月	

Table S4. Chemotherapy Study Treatments (All Treated Patients).

Study treatments, n (%)	Chemotherapy n = 263
Pemetrexed/carboplatin	115 (43.7)
Pemetrexed/cisplatin	86 (32.7)
Gemcitabine/carboplatin	33 (12.5)
Gemcitabine/cisplatin	13 (4.9)
Paclitaxel/carboplatin	16 (6.1)
Maintenance pemetrexed, n (%)	100 (38.0)

(PD1/PDL1-105)

CHECKMATE 026: FIRST-LINE NIVOLUMAB VERSUS CHEMOTHERAPY

patients with high TMB may derive enhanced benefit from nivolumab

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

An exploratory analysis was conducted in CheckMate 026 to test the hypothesis that

BIRC, blinded independent review committee

Check Mate-026

A Progression-free Survival **Median Progression-free 1-Yr Progression-free** Survival (95% CI) Survival Rate % то Nivolumab (N=211) 4.2 (3.0-5.6) 24 Chemotherapy (N=212) 23 5.9(5.4-6.9)Hazard ratio for disease progression or death, 1.15 (95% CI, 0.91–1.45); P=0.25 100-90 Patients without Disease Progression or Death (%) 80 70-60-50-40-30-20-Nivolumab 10-Chemotherapy 12 27 21 Months

PD1/PDL1-105

CONCLUSIONS

Nivolumab was not associated with significantly longer progression-free survival than chemotherapy among patients with previously untreated stage IV or recurrent NSCLC with a PD-L1 expression level of 5% or more. Overall survival was similar between groups. Nivolumab had a favorable safety profile, as compared with chemotherapy, with no new or unexpected safety signals. (Funded by Bristol-Myers Squibb and others; CheckMate 026 ClinicalTrials.gov number, NCT02041533.)

PFS (**>5% PD-L1+**)

Socinski M, et al. Presented at the European Society for Medical Oncology Congress; 7-11 October, 2016: Denmark, Copenhagen. Abstract LBA7_PR.

Nivolumab	Chemotherapy
n = 211	n = 212
4.2	5.9
(3.0, 5.6)	(5.4, 6.9)
23.6	23.2
	n = 211 4.2 (3.0, 5.6)

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

Chemotherapy Arm

OS in each treatment arm was also similar in patients with evaluable TMB data and all randomized patients

CHECKMATE 026: FIRST-LINE NIVOLUMAB VERSUS CHEMOTHERAPY

^aDNA was sequenced on the Illumina HiSeq 2500 using 2 × 100-bp paired-end reads; an average of 84 and 89 million reads were sequenced per tumor and germline sample, respectively (average 84.6 × and 93 × the mean target coverage, respectively)

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

Sample size throughout TMB determination		
atients, n (%)	Tumor DNA	Germline DNA
andomized	541 (100)	541 (100)
amples available for DNA xtraction ^a	485 (90)	452 (84)
NA available for sequencing	408 (75)	452 (84)
uccessful preparation of next- eneration sequencing library	402 (74)	452 (84)
assed internal quality control ^b	320 (59)	432 (80)
atched tumor-germline exome equences for TMB analysis ^c	312 (58)	

^aSamples were not available for various reasons, including but not limited to lack of patient pharmacogenetic consent, samples exhausted for PD-L1 testing, or poor tissue sampling ^bInternal quality control failure included factors such as discordance between tumor and germline DNA, too few sequence reads, and low or uneven target region coverage °8 patients with available tumor DNA sequences did not have matched germline DNA sequences

CHECKMATE 026: BASELINE CHARACTERISTICS

Characteristic	All randomized patients	TMB-evaluable patients
Characteristic	(n = 541)	(n = 312)
Median age, years (range)	64 (29, 89)	65 (32, 89)
Female, %	38.6	40.1
ECOG PS, %		
0	32.9	32.1
1/2	66.0/0.9	66.7/1.0
Smoking status, %		
Current/former smoker	19.8/68.0	17.9/71.5
Never smoker	10.9	9.3
Disease stage, %		
Stage IV	92.2	93.3
Recurrent	7.6	6.4
Tumor histology, %		
Squamous	24.0	22.8
Non-squamous	76.0	77.2
PD-L1 expression level, %		
≥5%	77.3	80.8
≥50%	39.6	41.7

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

CHECKMATE 026: EXPLORATORY ANALYSIS

TMB tertile	
Low	
Medium	
High	

- ROC curves were generated and suggested TMB has predictive power Additional analyses to help further refine potential optimal cutpoints are ongoing

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

For initial exploratory analyses, patients were divided into 3 subgroups based on TMB tertile distribution

Total missense mutations, no.
0 to <100
100 to 242
≥243

CHECKMATE 026: PFS

Nivolumab Arm

Data for patients with low and medium TMB were pooled in subsequent analyses

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

Chemotherapy Arm

CHECKMATE 026: PFS

High TMB

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

Low/medium TMB

CHECKMATE 026: OS

High TMB

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

Low/medium TMB

CHECKMATE 026: ORR

Peters S, et al. Presented at: American Association for Cancer Research (AACR) Annual Meeting 2017; April 1-5, 2017: Washington DC. Abstract CT082.

Nivolumab Chemotherapy 33 23 111 94 Low/medium **TMB Subgroup**

